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Gutman et al. [Chem. Phys. Lett. 355 (2002) 378–382] established a relationship
between the Coulson function, F(G, x) = n − [ixφ′(G, ix)/φ(G, ix)], where φ is the
characteristic polynomial, and the Hosoya index Z, which is the sum over all k of the
counts of all k-matchings. Like the original Coulson function, this relationship was pos-
tulated only for trees. The present study shows that the relationship can be extended to
(poly)cyclic graphs by substituting the matching, or acyclic, polynomial for the charac-
teristic polynomial. In addition, the relationship is extended to new types of matching
polynomials that match cycles larger than edges (2-cyc1es). Finally, this presentation
demonstrates a rigorous mathematical relationship between the graph adjacency matri-
ces and the coefficients of these polynomials and describes computational algorithms
for calculating them.
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1. Introduction

In 1940, Coulson [1] introduced an expression for the total HMO π -electron
energy, E, of a conjugated system

E = 1
π

∫ +∞

−∞
F(x)dx, (1)

where

F(x) = F(G, x) = n − ixφ′(G, ix)

φ(G, ix)
. (2)
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In equation (1), φ(G, ix) is the ordinary characteristic polynomial of the
adjacency matrix of the graph G, evaluated at ix, where i = √−1, φ′(G, ix) is
the first derivative of the characteristic polynomial, also evaluated at ix, and n

is the number of vertices in the graph.
Some 30years later, Hosoya [2] introduced the counting polynomial for a

graph G,

Q(G, x) =
�n/2�∑
k=0

p(G, k)xk, (3)

where n is as above, �n/2� is the largest integer not greater than n/2, and the
p(G, k) are the number of ways of choosing k disjoint edges from G. Associated
with this polynomial is the index, Z, that now bears Hosoya’s name:

Z(G) =
�n/2�∑
k=0

p(G, k). (4)

The coefficients of the polynomial in equation (3) have the same absolute values
as those in the much-studied acyclic, or matching polynomial, α(G, x):

α(G, x) =
�n/2�∑
k=0

(−1)kp(G, k)xn−2k. (5)

Formulas for interconverting these two polynomials were recently published [3].
The above equations have been in the literature for decades, but it was

only very recently that Gutman et al. [4] established mathematical connec-
tions between F(G, x) and Z(G). That reference called F(G, x) the Coul-
son function and defined the Hosoya point, xH, as that value of x for which
F(G, x) = ln Z(G). In this paper, Gutman et al. explicitly dealt only with trees,
i.e., connected, acyclic graphs. As demonstrated below, however, it is possible to
extend their results in several ways, revealing unexpected results. Other results
from Gutman et al. [4] relevant to the present study are F(G, 1.2) ≈ ln Z(G) and
ln Z ≈ aF(G, 1)+b. In this last result, a is almost independent of the number of
vertices n, while b is an (approximately) increasing function of n. Also, the val-
ues of a and b are somewhat different for all trees than they are for only chem-
ical trees, i.e., trees with no vertex degree >4.

2. Extension of xH to acyclic “reference” graphs

The much-studied acyclic, or matching, polynomial is often held to be
the characterstic polynomial of a “reference” graph which is not physically
realizable but has the properties of a tree. An obvious extension of the work
described above, then, is to redefine the Coulson function in terms of α(G, x)



Gordon G. Cash / Coulson function and Hosoya index 119

and α′(G, x) in place of φ(G, x) and φ′(G, x). For reasons which will be appar-
ent later, we call this function F2(G, x) and the associated Hosoya point xH,2.
As noted above, Z(G) is just sum of the coefficients of α(G, x). As expected,
“reference” trees for a variety of cyclic structures, e.g., benzenoids, planar non-
altemants, 5,6-fullerenes, 4,6-fullerenes, polyhex toroidal fullerenes, gave values
for xH within the range found by Gutman et al. [4] for real trees. Two general
observations from this exercise are that average xH tends to be larger for planar
structures than for cages and larger for bipartite graphs than for nonbipartite.

Somewhat more unexpected results arose from the study of ln Z ≈ aF2(G, 1)

+ b for cyclic structures. Figure 1 shows a plot of this function for 153 benz-
enoids of various sizes studied by Herndon et al. [5]. For trees, Gutman et al.
[4] found that a and b varied with the number of vertices in the graph, but for
this set of benzenoids, an excellent correlation was obtained using structures of
all sizes: In Z = 0.9282(0.0015)F2(G, 1)−0.2119(0.0225), n = 153, r2 = 0.9996, F =
365735, s = 0.04. Figure 1 shows distinct clustering of the data points, with each
cluster containing all of the structures with a particular value of n. Benzene itself
is at the lower left. Examining a few clusters in detail did not reviewal any corre-
lations at constant n nearly as linear as for the correlation for the entire dataset.
In this respect, the reference trees for the set of benzenoids differ significantly
from real trees.

Figure 2 shows the results of the same exercise with a set of 45 C30H12

indacenoids studied by Fowler and Mitchell [6]. These are planar graphs consist-
ing of two pentagons and eight hexagons. The statistical parameters for this cor-
relation are ln Z = 0.4224(0.0102)F2(G, 1) + 8.8550(0.1764), n = 45, r2 = 0.9756,

F = 1717, s = 0.0027. While not as good as the benzenoid results, this is a very
good correlation. Even cursory inspection of Figure 2, however, reveals clear
structure in the dataset, namely, the points lie approximately on three straight
lines with nearly identical slopes but different intercepts. The statistical param-
eters for the three subsets are ln Z = 0.3218(0.0052)F2(G, 1) + 10.6035(0.0906),

Figure 1. Plot of lnZ vs.F2(G, 1) for 153 benzenoids of various sizes.
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Figure 2. Plot of ln Z vs.F2(G, 1) for 45 C30H12 indacenoids.

n = 10, r2 = 0.9979, F = 3797, s = 0.0003; In Z = 0.3146(0.0053)F2(G, 1)+10.7208
(0.0917), n = 21, r2 = 0.9946, F = 3527, s = 0.0003; ln Z = 0.2902(0.0029)F2(G, 1)

+ 11.1356(0.0502), n = 14, r2 = 0.9988, F = 9957, s = 0.0003. Placing a straight-
edge at various locations on the plot suggests that each of the three subsets
is further divided into three smaller subsets, again lying approximately on lines
with the same slope but different intercepts. There are, however, not enough data
points to make a solid statistical case for this second division. Certainly, the rela-
tionship between ln Z and F2(G, 1) is much richer in information than might
have been anticipated.

It is certainly tempting to speculate that the obvious data structure in
Figure 2 reflects some aspects of chemical structure in the underlying graphs.
However, when the 45 chemical structures are divided into the three groups rep-
resented by the regression lines, there are no obvious structural affinities within
any of the groups. Relative position of the two pentagons, perhaps the most
evident difference among the 45 structures, seems to be randomly distributed.
Clearly, a great deal more work, and with larger datasets, is called for.

3. Extension of xH to matchings other than edges

The previous section discussed extending the Coulson function and Hosoya
point from trees to cyclic structures via the matching polynomial, which enu-
merates sets of disjoint edges. In some applications of graph theory, it is con-
venient to consider an edge as a cycle of length 2. A reasonable question, then,
is whether the results for the matching polynomial can be extended further to
polynomials that enumerate disjoint sets of cycles of some length > 2. (These
“cycle-matching” polynomials have appeared in the literature before; their his-
tory is discussed in the next section.)
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Let us define polynomials

αc(G, x) =
�n/c�∑
k=0

(−1)kpc(G, k)xn−ck, (6)

where the pc(G, k) are the number of ways of choosing k disjoint cycles of
length c from the graph G. We call the Coulson function derived from these
polynomials Fc(G, x) and the sum of the absolute values of the coefficients
Zc(G).

In the case of c = 2, equation (6) reduces to equation (5), the ordinary
matching polynomial. Successive exponents of these polynomials will differ by c.
For purposes of comparison with previous results, it would be better to define
an associated set of polynomials βc(G, y), y ≡ xc/2, so that successive exponents
differ by 2, and another set γc(G, z), z ≡ xc. Let λ, λβ, and λγ be the roots
of the polynomials αc, βc, and γc, respectively. No information regarding either
Z(G) or F(G, x) is lost by using either βc(G, y) or γc(G, z) in place of αc(G, z),

because

Zc =
n∏

j=1

(1 + λ)1/c =
2�n/c�∏
j=1

(1 + λ2
β)1/2 =

�n/c�∏
j=1

(1 + λγ ). (7)

Furthermore, Gutman et al. [4] showed that

F(G, x) =
n∑

j=1

λ2
j

x2 + λ2
j

+ i
n∑

j=1

xλ

x2 + λ2
j

, (8)

which generalizes to

Fc(G, x) =
�n/c�∑

j=1
λ	=0

c∑
k=1

λ
2/c
γ 12k/c

(x2 + λ
2/c
γ 12k/c)

+ i
�n/c�∑

j=1
λ	=0

c∑
k=1

λ
1/c
γ 1k/c

(x2 + λ
2/c
γ 12k/c)

, (9)

where 11/c = cos(2π/c)+i sin(2π/c), the complex cth root of 1. (The correspond-
ing expression in λβ is rather cumbersome.) When c = 2, equations (8) and (9)
are the same. This is a straightforward generalization of the pairing theorem,
according to which, in the case of c = 2, the roots occur in pairs with λj = −
λn−j+1. When c > 2, the roots occur in groups of c, the individual roots within
each group related by 11/c.

We now look at the buckminsterfullerene graph, C60, as an example. For
c = 6, α6(C60, x) = x60−20 x54+160 x48−660 x42+1510 x36−1912 x30+1240 x24−
320 x18 +5 x12. The polynomial in y = c/2 has the same coefficients but different
powers of the variable: β6(C60, y) = y20 − 20 y18 + 160 y16 − 660 y14 + 1510 y12 −
1912 y10 + 1240 y8 − 320 y6 + 5 y4. The coefficients associated with each power
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of the variable, xk, enumerate the ways of choosing k/6 (respectively k/2) dis-
joint hexagons from the C60 graph. This is not the same as the sextet polyno-
mial, σ(G, x), originally proposed by Hosoya and Yamaguchi [7] because that
polynomial counts a selection of hexagons only if the remaining vertices can be
paired into edges. For some graphs, including C60, σ (G, y) and β6(G, y) have the
same relationship as Q(G, x) and α(G, x) above (equations (3) and (5)), but this
is not generally true. Gutman [8] discussed conditions under which these poly-
nomials are so related for benzenoids, but no more general cases seem to have
been studied. In particular, the relationship holds iff σ(G, y) is identical to the
independence polynomial, ω(G, y), of the reduced dual, or characteristic tree [9],
of the hexagons, about which more below. It would be of value to determine
which classes of structures have all sets of disjoint hexagons resonant in the Clar
sense.

Another particularly interesting polynomial is α5(C60, x) = x60 − 12 x55

+ 66 x50 − 220 x45 + 495 x40 − 792 x35 + 924 x30 − 792 x25 + 495 x20 − 220 x15

+ 66 x10 − 12 x5 + 1. Perhaps the most obvious feature of α5(C60, x) is that
the absolute values of its coefficients form a row of Pascal’s triangle. This is so
because all 12 pentagons in C60 are independent of each other. Furthermore,
β5(C60, x) is identical to α(G, x) (and φ(G, x)) where G consists of 12 disjoint
ethylene graphs. It follows that Z(12C2) = Z6(C60) and xH(12C2) = yH,6(C60)

(yH,c is the Hosoya point derived from the βc(G, y) polynomial). Note also that
xH (12C2) = xH(C2) = 1.3731. This result, combined with results for larger trees
from Gutman et al. [4], leads to the following:

Conjecture: The value of xH for the ethylene graph is the maximum value of
xH for any Hosoya point derived from a polynomial whose successive exponents
differ by 2.

This value for yH,6(G) will accrue to all isolated-pentagon fullerenes. That
much prior research identifies these as the most stable isomers suggests yH,6(G)

as a possible predictor of fullerene stability.
The summations in equations (3–6) start with k = 0. An empty matching,

i.e., no way of selecting a subgraph, has αc = xn and Zc = 1. This is relevant to
the present discussion because it is mathematically possible, if not physically rea-
sonable, to have a cycle-matching polynomial with the cycle size larger than the
entire graph, i.e., c > n. It turns out, however, that Fc>n(G, x) = 0 for all x,

and ln Zc>n = 0, so that yH,c>n is undefined. In other words, the Hosoya point
is mathematically defined only when the corresponding subgraph makes physical
sense. We consider this further evidence that the Hosoya point has a meaningful
relationship to structure and is not merely a mathematical curiosity. A related
observation is the statement of Gutman et al. [4] that the Hosoya point exists
only when F(G, 0) > ln Z. This is true if the Hosoya point is taken to be real-
valued, but it has an imaginary value when F(G, 0) < ln Z. It is an open prob-
lem whether any graph exists for which the Hosoya point has a complex value.
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4. Relationship of cycle-matching polynomials to other graph polynomials

4.1. Independence polynomial

An independence polynomial is analogous to a matching polynomial,
except that an independence polynomial enumerates sets of disjoint (“indepen-
dent”) vertices instead of sets of disjoint edges. Thus, the matching polynomial
of a graph is identical to the independence polynomial of its line graph [4]. In
general, Gutman and Harary [10] showed that every cycle-matching polynomial
(expressed with exponents xk like the counting polynomial in equation (3)) of
the type discussed in the previous section is identical to the independence poly-
nomial of another graph H. Gutman and Harary [10] define the independence
polynomial with exponents xk, but other sources, e.g., Cvetković et al. [11] define
it with exponents x2n−2k., compare equations (3) and (5) above. The notation of
Gutman and Harary seems more convenient, but in order to place the indepen-
dence and cycle-matching polynomials on the same footing, it is necessary to use
the conversion formula of Miličević et al. [3], modified for c > 2. Specifically, to
convert equation (3) to (5), Miličević et al. give α(G, x) = xnQ(G, −x 2), which
we modify to

αc(G, x) = xnω(H, −xc). (10)

It is easy to visualize this graph for the examples above of αc(C60, x ). It has
20 vertices at the center of each hexagon (respectively, 12 at the center of each
pentagon) and edges {vi, vj } ∈ E iff hexagons (respectively, pentagons) have an
edge in common in C60. If c is larger than 6, say 9, then αc(C60, x ) would count
cycles consisting of the perimeter of a hexagon and an adjacent pentagon, and
{vi, vj } ∈ E iff the perimeters have any vertex in common. This graph is easy to
construct, but not intuitive to visualize. The logical conclusion of this process is
c = n, in which αc(G, x) counts Hamiltonian circuits. Here, αc(G, x) = xn − h,

where h is the number of Hamiltonian circuits. The graph whose independence
polynomial is related to αc(G, x) by equation 10 in this case is the complete
graph on h vertices, Kh, since no Hamiltonian circuit is independent of any
other.

4.2. Immanantal polynomials

It is mathematically possible, if computationally demanding, to derive
any coefficient of any cycle-matching polynomial αc(G, x) from the coefficients
of suitable immanantal polynomials and a suitably selected submatrix of the
irreducible character matrix of the symmetric group, Sn. For a discussion of
immanantal polynomials, see Merris and Watkins [12], Balasubramanian [13],
and Cash [14]. In Cash [14], the possibility of using this technique to enumerate
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independent sets of both mutually resonant hexagons and all hexagons is men-
tioned, but no specific example is provided.

Suppose the problem were to count independent sets of three pentagons in
a graph on 30 vertices. The irreducible character matrix of S30 is a square matrix
M30 of order P(30) = 5604, where P(n) is the partition P function, the number
of ways of expressing n as a sum of nonincreasing integers. Choose all the col-
umns of M30 indexed by conjugacy classes ξ = {. . . , 115}, i.e., those with exactly
15 fixed points. There are P(15)−P(14) = 41 of these, one of which is {53, 115},
the one corresponding to three pentagons. Any 41 rows of M30 may be chosen,
so long as the resulting 41 × 41 matrix has full rank. In practice, it is conve-
nient to choose rows indexed by λ = {. . . , 115}, where the first parts of the par-
titions are the conjugates of the corresponding parts ξ. For explanations of terms
and examples of character generation, see Merris and Watkins [12] and Liu and
Balasubramanian [15]. Call the 41 × 41 matrix R = (rj.k). From each of the
41 immanantal polynomials associated with the selected λ = {. . . , 115}, use the
coefficient of x15, the one to which ξ = {53, 115} contributes. Call these coeffi-
cients iλ,15. Now, produce 41 simultaneous equations,

41∑
k=1

rj,kq(G, ξ) = iλ,15, (11)

where the q(G, ξ) are the number of permutations in the graph G belonging to
each conjugacy class ξ. Because of the manner in which R was constructed, these
equations are guaranteed to be linearly independent, and so they can be solved
for q(G, {53, 115}). It is important to keep in mind that this procedure counts
permutations. Since each cycle (c > 2) can be permuted in two ways, the solution
will be 23 = 8 times the number of ways of choosing three independent pentagons
from G. Matchings of any other type of subgraph may be calculated similarly.

5. Conclusions

Relationships were recently discovered between the Hosoya index and the
Coulson function, originally defined on the characteristic polynomials of trees.
The present study extended this work by allowing definitions of the Coulson
function on the matching polynomials of polycyclic structures and on polyno-
mials that match sets of independent subgraphs other than edges. A variety of
results were obtained, some of which clearly merit further study. Also, dem-
onstrated relationships between the subgraph-matching polynomials and other
graph polynomials suggested additional directions for investigation.
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Disclaimer

This document has been reviewed by the Office of Pollution Prevention and
Toxics, USEPA, and approved for publication. Approval does not signify that
the contents necessarily reflect the views and policies of the Agency, nor does the
mention of trade names or commercial products constitute endorsement or rec-
ommendation for use.
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[4] I. Gutman, D. Vidović and B. Furtula, Chem. Phys. Lett. 355 (2002) 378.
[5] W.C. Herndon, P.C. Nowak, D.A. Connor and P. Lin, J. Am. Chem. Soc. 114 (1992) 41.
[6] P.W. Fowler and D. Mitchell, J. Chem. Inf. Comput. Sci. 35 (1995) 874.
[7] H. Hosoya and T. Yamaguchi, Tetrahedron Lett. (1975) 4659.
[8] I. Gutman, Z. Naturforsch. 37a (1982) 69.
[9] A.T. Balaban and F. Harary, Tetrahedron 24 (1968) 2505.

[10] I. Gutman and F. Harary, Utilitas Math. 24 (1983) 97.
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